Diffractive χ Production at the Tevatron and the LHC

Murilo Rangel

CBPF

in collaboration with C. Royon, R.Peschanski, G.Alves and J.Barreto Nucl. Phys. B 774, 53-63

Outline

- Introduction
- The Bialas-Landshoff Formalism
- Full Kinematics for Exclusive Production
- Exclusive and Inclusive χ_{C_0} , χ_{B_0} Production
- Comparison with CDF Limits on χ_{C_0} Production
- Possibility of a new measurement at DØ
- Exclusive χ_{C_0} Production at the LHC
- Conclusion

Introduction

QCD is the theory of the strong interactions - Hadronic process

⇒ 2 distinct classes

The color singlet exchange ightarrow Pomeron (Regge Theory - $s\gg |t|$)

$$A_P(s,t) \sim s^{\alpha_0 + \alpha t}; \ \alpha_0 \sim .08 \ \alpha \sim .25$$

Hard Diffraction

"hard diffraction provides a QCD laboratory where several aspects of QCD dynamics can be investigated."

Gunnar Ingelman

Soft and Hard process in the cross section

$$A_{SD} \sim f_{P/h} f_{q,g/P} f_{q,g/h} \sigma_{hard}$$

 $A_{DPE} \sim f_{P/h} f_{q,g/P} \sigma_{hard}$

The pomeron nature remains elusive.

Double Pomeron Exchange

One can define two types of double pomeron exchange:

Exclusive: $hh \rightarrow h + \text{heavy object} + h$

Inclusive: $hh \rightarrow h + X + \text{heavy object} + Y + h$

h = proton at LHC and (anti)proton at Tevatron

Exclusive DPE

Search for exclusive DPE is presently very active (Dijets and χ_c) \Rightarrow Higgs can be produced in such mode with good mass determination

Exclusive production of χ_{c_0} has been reported by the CDF collaboration, with an upper limit for the cross section of

$$\sigma_{exc}(p\bar{p} \to p + J/\psi + \gamma + \bar{p}) < 49 \pm 18(stat) \pm 39(sys) \ pb$$

Bialas-Landshoff Formalism for Exclusive Production (1991)

P_T Calculate amplitude (|t|=0) with non-perturbative gluons

— (Landshoff-Nachtmann 1987) and reggeize them

We compare generator level results from the DPEMC Monte-Carlo, with the kinematics appropriate for small-mass, with CDF measurement. Inclusive DPE background addressed

The Bialas-Landshoff Formalism

Extension of the BL formalism for diffractive Higgs production Exclusive and inclusive diagrams are based on soft pomeron exchange

Inclusive DPE - normalization is fixed by data -BPR (2001)

$$d\sigma_{\chi}^{inc}(s) = C_{\chi}^{inc} \left(\frac{x_1^g x_2^g}{M_{\chi}^2}\right)^{2\epsilon} \delta\left(\xi_1 \xi_2 - \frac{M_{\chi}^2}{x_1^g x_2^g s}\right)$$

$$\prod_{i=1,2} \left\{ G_p(x_i^g, \mu) \ d^2 v_i dx_i^g \ \frac{d\xi_i}{1-\xi_i} \ \xi_i^{2\alpha' v_i^2} \exp(-2\lambda_{\chi} v_i^2) \right\}$$

$$d\sigma_{\chi}^{exc}(s) = C_{\chi} \left(\frac{s}{M_{\chi}^{2}}\right)^{2\epsilon} \delta \left[\frac{M_{\chi}^{2}}{s} - \frac{M_{diff}^{2}}{s}\right]$$
$$\prod_{i=1,2} \left\{ d^{2}v_{i} \frac{d\xi_{i}}{1-\xi_{i}} \xi_{i}^{2\alpha'v_{i}^{2}} \exp(-2\lambda_{\chi}v_{i}^{2}) \right\}$$

Rapidity gap survival factor applied only for the exclusive case

 C_χ depends contains a non pertubartive part due the quark-pomeron coupling $G^2/4\pi\sim 1$

Full Kinematics for Exclusive DPE

The DPEMC Monte-Carlo is used to compare the BL predicted cross sections with the CDF upper limit.

The generation method for high-mass ($M_{diff}^2 >> |t|$) is based on the following steps:

- ightarrow Generate t_1 , t_2 and $\xi_1=1-rac{k_z^{final}}{k_z^{initial}}$.
- → Exclusive events have the property that the full energy available in the center-of-mass is used to produce the diffractive object, or in other words there is no Pomeron remnant.
- ightarrow The value of ξ_2 is thus imposed by $M_{diff}^2 pprox s \xi_1 \xi_2$

This approximation is no longer true for low mass states (χ mesons)

$$|t|$$
 is no longer $<< M_{diff}^2$

⇒ Need to derive full 4-momentum conservation

Full Kinematics for Exclusive DPE

Using the approximation $m_p = m_{\bar{p}} = 0$ (mass of the colliding particles):

$$s = (k_p + k_{\bar{p}})^2 - (\vec{k_p} + \vec{k_{\bar{p}}})^2 + M_{diff}^2 + 2E_M(k_p + k_{\bar{p}}) - 2\vec{k_M} \cdot (\vec{k_p} + \vec{k_{\bar{p}}})$$

Defining

$$\Omega = -\cos\theta_p \cos\theta_{\bar{p}} + \sin\theta_p \sin\theta_{\bar{p}} (\cos\varphi_p \cos\varphi_{\bar{p}} + \sin\varphi_p \sin\varphi_{\bar{p}});$$

and applying conservation constraints, it can be shown that

$$M_{diff}^2 = s + 2k_p k_{\bar{p}}(1 - \Omega) - 2\sqrt{s}(k_p + k_{\bar{p}})$$

Using the definition of ξ :

$$\xi_{p,\bar{p}} = 1 - \frac{k_z^{final}}{k_z^{initial}} \Rightarrow k_{p,\bar{p}} = \frac{\sqrt{s}/2}{\cos\theta_{p,\bar{p}}} (1 - \xi_{p,\bar{p}})$$

$$\frac{M_{diff}^{2}}{s} = 1 + \frac{(1 - \xi_{p})(1 - \xi_{\bar{p}})}{2\cos\theta_{p}\cos\bar{p}}(1 - \Omega) - \left(\frac{1 - \xi_{p}}{\cos\theta_{p}} + \frac{1 - \xi_{\bar{p}}}{\cos\theta_{\bar{p}}}\right)$$

Full Kinematics for Exclusive DPE

Within the framework of DPEMC, we do the following:

- ightarrow Generate θ_1 , θ_2 (following an exponential distribution), and ξ_1 , which gives t_1
- $\rightarrow \xi_2$ is then computed
- → The events are then weighted according to the cross section

$$\sin^2 \theta_{1,2} \sim \theta_{1,2}^2 = \frac{|t_{1,2}|}{(1-\xi_{1,2})(s/4)}$$

The new steps are thus to use the variables θ and ξ \Rightarrow avoid the cumbersome solution in terms of ξ and t.

Exclusive and Inclusive χ Production

$\sigma(nb)$	Tevatron $\sqrt{s} = 1.96 \text{ TeV}$	LHC $\sqrt{s}=14~{\rm TeV}$
$\sigma_{exc}(\chi_{c_0})$	1.17×10^3	0.804×10^3
$\sigma_{exc}(\chi_{b_0})$	4.4	3.29
$\sigma_{inc}(\chi_{c_0})$	1.8×10^{4}	4.8×10^4
$\sigma_{inc}(\chi_{b_0})$	20	1.8 $\times 10^2$

Cross sections (in nb) for exclusive and inclusive production at the Tevatron and the LHC.

Exclusive Production cross section of χ_{b0} (left) and χ_{c0} mesons (right).

Comparison with CDF Limit

The CDF Collaboration has presented preliminary results for exclusive $J/\psi + \gamma$ production with the following cuts:

$$p_T(\mu^{\pm}) \ge 1.5$$
 (GeV), $|\eta(\gamma)| \le 3.5$ and $|\eta(\mu^{\pm})| \le 0.6$

and the upper limit provided is:

$$\sigma_{exc}(p\bar{p} \to p + J/\psi + \gamma + \bar{p}) < 49 \pm 18(stat) \pm 39(sys) \ pb$$

If we apply the CDF cuts at generator level

$$\sigma_{exc}(p\bar{p} \to p + \chi_{c0}(\to J/\psi\gamma) + \bar{p}) = 61pb$$

To consider the non-exclusive background, which can enter directly in the experimental cross section, we considered the contamination due to quasi-exclusive events.

CDF removes the events with a mass fraction $F_M = \frac{M_\chi^2}{M_{diff}^2} > 0.85$. Since we do not have detector simulation, we apply many mass fraction cuts.

Comparison with CDF Limit

Quasi-exclusive cross section (in pb) at the Tevatron after CDF cuts gluon density in the Pomeron $\to (1-\beta)^{\nu}$: HERA $\nu=0.0\pm0.6$.

Mass Fraction Cut	$\nu = 0$	$\nu = -1$	ν = -0.5	$\nu = 0.5$	$\nu = 1$
≥ 0.75	14.33	194.94	52.28	3.88	0.84
≥ 0.8	5.4	118.87	27.15	0.84	0.17
≥ 0.85	2.02	61.89	11.13	0.17	0
≥ 0.9	0.34	28.43	2.87	0	0
≥ 0.95	0.08	19.48	0.84	0	0

CDF cut	1	2	3	4	5
Exclusive cross section (pb)	5.56×10^3	7.97×10^2	5.25×10^2	61.47	61.21

Exclusive cross section $\sigma_{exc}(p\bar{p}\to p+\chi_{c0}(\to J/\psi\gamma)+\bar{p})$ for each CDF cut:

- 1 one muon with $p_T \geq 1.5$; 2 one muon with $p_T \geq 1.5$ and $|\eta| \leq 0.6$;
- 3 two muons with $p_T \geq 1.5$; 4 two muons with $p_T \geq 1.5$ and $|\eta| \leq 0.6$;
- 5 same constraint of the forth column plus one gamma with $\eta \leq 3.5$.

Possible Measurement at DØ

The roman pot detectors in the DØ collaboration can be used for (anti)proton tagging

Interfaced DPEMC generator with a code to propagate (anti)protons Suggested cuts:

$$((p_T(\mu^+) \ge 2.0 \text{ (GeV) or } p_T(\mu^-) \ge 2.0 \text{ (GeV)})$$

 $|\eta(\mu^\pm)| \le 2.0$
 $|\eta(\gamma)| \le 3.0)$

Possible Measurement at DØ

Number of exclusive χ_{c_0} events (MC error $\sim 10\%$).

Regular Tevatron Stores - L = 100 pb $^{-1}$							
Scenario	ario A B C D						
0	1.2 ×10 ⁸	2.6×10^6	4.8×10^{6}	2.9×10^{5}			
DØ selection	1.8 $\times 10^2$	2.7×10^{1}	3.0×10^{1}	1.5			

Scenario 0 - all decay channels.

- A all (without p or \bar{p} tagging);
- B tagged in the p side quadrupole;
- C tagged in the \bar{p} side quadrupole
- D double tagged events in the quadrupoles.

One would need to use rapidity gap selection

Exclusive χ_{C_0} Production at the LHC

The TOTEM/CMS acceptance for the high β^* optics and low ξ values is typically 90 %, for the range $0 < |t| < 1 \ GeV^2$.

 \Rightarrow For 10 pb⁻¹ of data, 5.3×10⁶ double tagged events.

The lowest possible muon p_T cut at low luminosity is $p_T \ge 1.5$ (GeV) for $|\eta| \le 2.4$.

Quasi-Exclusive cross section (in pb)

Mass Fraction Cut	$\nu = 0$	$\nu = -1$	u = -0.5	$\nu = 0.5$	$\nu = 1$
≥ 0.9	1.35	138.11	17.88	0.34	0.17
≥ 0.95	0	13.83	1.18	0	0

Exclusive cross section (in pb)

Central cut	1	2	3	4
Total	3.74×10^3	1.43 $\times 10^3$	3.64×10^{2}	1.27 $\times 10^2$
After Totem Acceptance	3.03×10^3	1.16×10^{3}	2.95×10^{2}	1.03×10^{2}

- 1 one muon with $p_T \ge 1.5$; 2 one muon with $p_T \ge 1.5$ and $|\eta| \le 2.4$;
- 3 two muons with $p_T \geq 1.5$; 4 two muons with $p_T \geq 1.5$ and $|\eta| \leq 2.4$.

Conclusion

- Calculate diffractive production cross section for χ mesons using an extended version of the Bialas-Landshoff model, including the full kinematics needed for low mass states,
- The results for exclusive production at the Tevatron agree with a recent CDF upper limit for the exclusive production of χ_{c_0} ,
- The non-exclusive background (in particular "quasi-exclusive") can reach similar levels as the exclusive signal,
 - ⇒ CDF result is not conclusive about Exclusive Production
- Exclusive χ_{c_0} production at the Tevatron, using the DØ forward proton detector is possible if a tight cut on the F_M can be performed successfully.
- Exclusive production at the LHC, using the CMS/TOTEM detectors, depends again a high enough cut on the mass fraction

Comparison with CDF Limit

Exclusive model does not include Sudakov factors (small for low masses)

